CLASSE 2^ C
LAVORO ESTIVO DI FISICA
Anno scolastico 2014 / 2015

Per gli alunni con debito formativo in Fisica

- Ripassare bene tutti gli argomenti trattati durante l’anno.

- Provare a rifare per ogni argomento un congruo numero di esercizi assegnati in classe durante l’anno.

- Svolgere tutti gli esercizi allegati.

Per tutta la classe

- Svolgere la metà degli esercizi allegati (cioè all’interno di ogni pagina farne "uno sì e uno no")

Si ricorda agli studenti che il ripasso e lo studio estivo permetteranno di affrontare la classe successiva in modo appropriato.

Buone vacanze!

Milano, 4 Giugno 2015

La docente
Silvia Pozzi
1.5 Trova il rapporto tra le costanti elastiche k_1 e k_2 di due molle, sapendo che se si appende alla prima un corpo di massa 8 kg sulla Luna, questa si allunga di 2,13 cm, e che se si appende alla seconda un corpo di peso 731 N, questa si allunga di 8,57 cm.

$$\frac{k_1}{k_2} = 0,072$$

1.6 A due molle apposite di stessa costante elastica è appeso un corpo sferico di raggio $r = 5$ cm e densità 960 kg/m^3. All'equilibrio le molle sono allungate di 35 mm rispetto alla posizione di equilibrio iniziale. Determina la costante elastica di ciascuna delle due molle. [70 N/m]

1.7 A una molla vengono appesi successivamente un oggetto di peso 50 N e un oggetto di peso sconosciuto. Se la prima volta la molla si allunga di 2 cm e la seconda volta si allunga di 3,5 cm, determina il peso del secondo oggetto. [87,5 N]

1.8 Quanto pesa al livello del mare un corpo di massa 83,5 kg? Se, appendendolo a una molla, questa si allunga di 1,3 m, quanto vale la costante elastica della molla? [818 N; 629 N/m]

1.9 Dato il vettore di componenti $(4; 2)$, determina un vettore di uguale modulo e direzione perpendicolare. Quante sono le soluzioni al problema? Fornisci anche una rappresentazione grafica. $[-2; 4; \text{due}]$

1.10 Dati il vettore di componenti $(5; 5)$ e il vettore di componenti $(-1; 4)$, determina il vettore che addizionato agli altri due dà il vettore nullo. $[-2; -9]$

1.11 Un ragazzo sta pescando con una lenza e un grosso pesce di massa 2,5 kg abboccà all'amo. La lenza con cui il ragazzo tira verticalmente è di 24 N, riuscirà il pesce a rimanere sott'acqua? Disegna i vettori che rappresentano le forze in gioco e calcola il modulo della somma e della differenza delle due forze. [31,05 N; 48,5 N]

1.12 Determina la lunghezza dell'ombra di una statua lunga 10 cm in posizione verticale, sapendo che l'angolo tra la direzione dei raggi solari e il terreno è di 50°. [8,4 cm]

1.13 Un equilibrista cammina su una fune che si flette di 5° al suo passaggio. Il peso dell'equilibrista è di 800 N. Dopo aver scomposto le forze nelle due componenti verticale e orizzontale, calcola il modulo delle forze con le quali si tendono i due tratti di fune, tenendo conto che la somma di tutte le forze in gioco è nulla. $[F_1 = 400 \text{ N}; F_2 = 400/\tan(5°) = 4572 \text{ N}; 4589 \text{ N}]$

1.14 Costruisci un triangolo rettangolo isoscele di cateti lunghi 1 m e indica le componenti dei vettori che corrispondono ai lati del triangolo, dopo averlo disegnato su un sistema di riferimento cartesiano, in cui gli assi cartesiani coincidono con i cateti. Scegli di percorrere il triangolo in un determinato verso, orario o antiorario.

1.15 Determina tre vettori di modulo 2 cm disposti in modo che il vettore risultante sia nullo. [i tre vettori formano un triangolo equilatero]

1.16 Due ragazzi tentano di far spostare un mulo che rimane immobile. Se ciascuno dei due esercita sulla cava una forza di 500 N e le direzioni delle due forze formano un angolo di 20°, quanto vale il modulo della forza esercitata dal mulo? [980 N]

1.17 Un marinello tira dal molo una barca per farla accostare al suo bordo. Se il molo è più alto dell'acqua la fune forma con la superficie dell'acqua un angolo di 45°. Determina la forza esercitata dal marinello, se la forza orizzontale applicata alla barca è di 150 N. [222 N]

1.18 Tre oggetti identici vengono appesi a una molla. Dopo aver appeso i primi due, la molla si è allungata di 36 cm. Qual è l'allungamento totale quando viene appeso anche il terzo oggetto? [51,4 cm]

1.19 Due ragazzi vogliono trascinare su una superficie orizzontale un sacco molto pesante. Sapendo che il coefficiente di attrito è 0,4, che il sacco pesa 2000 N, che i due ragazzi possono tirare il sacco con due funi che formano tra loro un angolo di 40° esercitando forze uguali, qual è la minima forza che deve applicare ciascuno di loro? [426 N]

1.20 Un fusto metallico cilindrico di peso 200 N ha una base di raggio 45 cm ed è alto 84 cm. Il fusto poggia con una base su un piano con coefficiente di attrito 0,3. Quando viene riempito con un liquido, per spostarlo a velocità costante è necessaria una forza orizzontale di 1945 N. Calcola la densità del liquido con cui è riempito il fusto. [1,2 \cdot 10^3 \text{ kg/m}^3]
10 Un corpo è in equilibrio su un piano privo di attrito inclinato di 45° rispetto al piano orizzontale, attaccato a una molla di costante elastica \(k = 200 \text{ N/m} \), allungata di 0,25 m dalla posizione di equilibrio. Determina il peso del corpo. [71 N]

96 Una tavola di legno viene appoggiata su otto molle di identica lunghezza a riposo e costante elastica \(k = 200 \text{ N/m} \). Se la tavola ha una massa di 8 kg, di quanto si comprimeranno le molle (\(g = 10 \text{ m/s}^2 \))? [10 cm]

1 Un lampadario di massa 20 kg è appeso al soffitto come in figura tramite due funi che formano angoli di 45° rispetto alla verticale. Quanto vale la forza che esercita ciascuna delle due funi? [141 N]

97 Un asta lunga 1 m e del peso di 100 N è appoggiata su due sostegni posti alle sue estremità. A 25 cm di distanza dall'estremità sinistro dell'asta è posto un peso \(P = 60 \text{ N} \). Determina la forza che ognuno dei due sostegni esercita sull'asta. [95 N; 65 N]

98 Un asta rigida lunga 3 m sono applicate due forze come mostrato in figura, di modulo rispettivamente \(f_a = 60 \text{ N} \), a una distanza di 2 m dall'estremità A dell'asta, ed \(f_b = 30 \text{ N} \), all'estremità B dell'asta, con verso opposto rispetto a \(f_a \). Calcola il modulo e il punto di applicazione della forza risultante. [30 N; 1 m da A]

99 Un bambino vuole aprire una porta spingendo sul piano della porta, a una distanza di 90 cm dai cardini, con una forza di 30 N, che forma con il piano della porta un angolo di 60°. Qual è la forza che esercita la mamma, dal lato opposto della porta, se vuole che questa non si apra, se esercita la forza perpendicolarmente al piano della porta e a una distanza di 40 cm dai cardini? [Ricorda che il braccio della forza è la distanza tra le rette di applicazione della forza e l'asse di rotazione. 58 N]
1) Un pezzo di legno avente densità 706kg/m3 è legato con una fune al fondo di un recipiente pieno d’acqua. Il pezzo di legno è completamente immerso e ha volume di 8,00 10^{-3}$m3. Calcola la tensione della fune.

[T=0,0231N]

2) Una sfera di acciaio (densità 7,8 10^3$kg/m3), agganciata ad una molla con costante elastica 40N/m, si trova immersa in un fluido la cui massa di 725g occupa un volume di 500ml (detersivo liquido). La sfera ha a sua volta una massa di 110g. Trova l’allungamento della molla.

[2,2m]

3) Si sospetta che un blocco di ferro di massa 7,8 10^2$g presenti al suo interno qualche cavità. Immerso in acqua, il blocco pesa 1,6N meno rispetto a quando è fuori dall’acqua. Il dubbio è fondato? In caso affermativo determina il volume della cavità, sapendo che la densità del ferro è 7,8g/cm3.

[si, 6,3 cm3]

4) Al centro della piscina di un villaggio turistico vi è una piattaforma di legno (densità 550kg/m3). La piattaforma ha uno spessore di 30cm, che risulta parzialmente immerso in acqua. Quanti centimetri dello spessore della piattaforma si trovano al di sotto della superficie libera dell’acqua?

[17cm]

5) Un sub sta nuotando alla profondità di 20,0m. Calcola la forza F che preme su ciascun cm2 della sua superficie corporea prodotta solo dall’acqua (densità dell’acqua 1000kg/m3). Si trascinino la differenza di profondità che caratterizza le dierse parti del corpo)

[F=19,6N]

6) Un’auto di 12000N di peso viene sollevata mediante un torchio idraulico che consiste in un tubo ad U i cui rami, di sezione diversa, sono riempiti di olio e chiusi da pistoni a tenuta. I due rami del tubo hanno raggiunto, rispettivamente, 18cm e 5cm. L’auto è posta sul pistone del ramo di sezione maggiore e i pistoni sono inizialmente allo stesso livello. Qual è la forza che occorre applicare al pistone di sezione minore perché l’auto inizi a salire? (Si trascuri i peso dei pistoni)

[926N]

7) Un oggetto che si ritiene fatto tutto d’oro, ma che si pensa possa contenere anche ferro, pesa 2N. Immerso in acqua riceve una spinta pari a 0,2N. Sapendo che la densità del ferro è 7,8kg/dm3 e che quella dell’oro è 19,3 kg/dm3, decidi se l’oggetto è tutto oro oppure no.

[no]

8) Un tubo ad U è riempito quasi completamente con acqua e in un ramo viene poi versata una piccola quantità di olio vegetale, come mostrato in figura. La densità dell’acqua è 1000 kg/m3, quella dell’olio vegetale è 9,20 10^2$kg/m3. Se l’altezza dell’olio è 5,00cm, determina la differenza fra i livelli delle superfici superiori dell’olio in un ramo del tubo e dell’acqua nell’altro ramo.
PROBLEMI RIASSUNTIVI

1. **Lo scaldabagno.** Uno scaldabagno contiene 70 litri d’acqua a 20 °C. Per scaldare l’acqua si brucia del metano in una caldaia; ogni metro cubo di metano fornisce circa 3,56x10⁷ J di calore. Supponi che non ci siano dispersioni, cioè che tutto il metano bruciato serva per scaldare l’acqua.
 - Quanti metri cubi di metano bisogna bruciare per portare l’acqua a 70 °C?

 \[0,41 \text{ m}^3\]

2. **Un fabbro all’opera.** Per raffreddare un chiodo di ferro rovente alla temperatura di 400 °C, un fabbro lo mette in acqua fredda (15 °C). La massa del chiodo è 0,02 kg, quella dell’acqua 0,2 kg. Supponi che non ci siano dispersioni di calore.
 - Scrivi l’equazione dell’equilibrio termico, inserendo i valori numerici.
 - Risolvi l’equazione per calcolare la temperatura di equilibrio.

 \[19,4 °C\]

3. **Un agricoltore riempie di prima mattina a 15 °C una tanica contenente 28 litri di benzina \((k = 1,0 \times 10^{-3} \text{ K}^{-1}) \). Nel primo pomeriggio a 300 K versa la benzina nel recipiente cilindrico di alluminio \((r_{\text{base}} = 15 \text{ cm}, h = 40 \text{ cm}) \).
 - La benzina sarà contenuta tutta nel recipiente?

4. **Raffreddamento del latte.** Quattro cubetti di ghiaccio, ognuno di 50 g, si trovano alla temperatura di fusione del ghiaccio. Vengono messi dentro un recipiente che contiene 200 g di latte caldo. Il calore specifico del latte è 3900 J/(kg·K). Il ghiaccio si scioglie e raffredda il latte. Non vi sono dispersioni di calore.
 - Quanto calore assorbe il ghiaccio per fondere completamente?
 - Di quanto è variata la temperatura del latte, quando la fusione del ghiaccio è terminata? \[66800 \text{ J}, 85,64 °C\]

5. **INTERNET** Una sfera metallica, di massa 500 g e temperatura 200 °C, viene messa a contatto con del ghiaccio a 0 °C. Quando la temperatura della sfera è scesa fino a 0 °C si rileva che 100 g di ghiaccio si sono trasformati in acqua.
 - Quanto calore acquista il ghiaccio?
 - Nell’ipotesi che non ci sia nessuna dispersione di calore, calcola il calore specifico della sfera metallica.
 - Spiega come viene sfruttato il principio dell’esperimento sopra descritto nel calorimetro a ghiaccio di Lavoisier (vedi figura).

 \[33400 \text{ J}, 336 \text{ J/(kg·K)}\]

 [Usa un motore di ricerca per trovare informazioni sul calorimetro a ghiaccio di Lavoisier.]

6. **INTERNET** Un satellite in orbita usa l’energia solare per scaldare l’acqua, riuscendo a convertirla completamente in calore l’energia assorbita da un pannello solare di area uguale a 0,1 m².
 - Determina il calore generato dal pannello solare in 30 s.
 - Calcola il tempo necessario per aumentare di 20 °C la temperatura di 1 kg di acqua.

 \[4098 \text{ J}, 613 \text{ s}\]

 [Cerca su internet il valore dell’energia che il Sole mediamente invia sulla Terra, la costante solare.]
1 Immagine di un trapezio. Il trapezio della figura è posto davanti a uno specchio piano.

- Disegna l’immagine del trapezio per punti.
- L’area del trapezio immagine è diversa o uguale a quella del trapezio oggetto?

2 Lente di ingrandimento. Una lente di ingrandimento ha una lunghezza focale di 12 cm. Viene posta a 8,0 cm da un giornale.

- L’immagine che fornisce è reale o virtuale?
- Qual è l’ingrandimento?
- La lettera a1 s sul giornale è alta 3 mm. Quanto è alta la sua immagine?

3 Luce sul ghiaccio. Un raggio luminoso incide su un blocco di ghiaccio come in figura. L’indice di rifrazione del ghiaccio è 1,31.

- Spiega perché dopo essere entrato nel blocco il raggio non esce subito nell’aria.
- Disegna il percorso del raggio finché esce dal ghiaccio.

4 Proiettore di diapositive. In un proiettore, la diapositiva (oggetto) è posta rovesciata di fronte a una lente di distanza focale 12 cm. L’immagine si forma su uno schermo posto a 3,0 m dalla lente del proiettore.

- L’immagine è diritta o rovesciata?
- Quanto risulta ingrandita la diapositiva sullo schermo?
- Se l’immagine fosse troppo grande per lo schermo, bisognerebbe allontanare la lente dalla diapositiva o avvicinarla per farla stare tutta sullo schermo?

5 La luce nell’acquario. Un raggio di luce colpisce lateralmente il vetro (n = 1,5) di un acquario con un angolo di incidenza di 40°.

- Rappresenta la situazione con un disegno e indica con i, l’angolo di rifrazione nel passaggio aria-vetro.

- Quanto vale l’angolo di rifrazione i?
- Quanto vale l’angolo di rifrazione i, nel passaggio della luce dal vetro all’acqua?

6 La macchina fotografica. L’obiettivo di una macchina fotografica equivale a una lente convergente di distanza focale 35 mm. Ciò significa che l’immagine di un oggetto molto lontano si forma sulla pellicola a 35 mm dal centro ottico della lente.

- Quanto dista dal centro ottico un palo la cui immagine è a fuoco sulla pellicola?
- Quanto è alto il palo se l’immagine è alta 2,5 cm e dista 50 m dalla macchina fotografica?

7 Ragazza miope. Il punto remoto di una ragazza miope, cioè la massima distanza a cui riesce a mettere a fuoco un oggetto, è 250 cm. Per correggere la miopia occorre che una lente restituisca di un oggetto posto molto distante, praticamente all’infinito, un’immagine virtuale, diritta, a 250 cm.

- Che tipo di lente occorre?
- Qual è la sua distanza focale?
- Quante diottrie occorrono per correggere questo difetto visivo?

8 Interferenza attraverso due fenditure. Un’onda attraverso due fenditure distanti 0,3 mm e forma una figura di interferenza su uno schermo che dista 1,5 m dal piano delle due fenditure. La distanza della prima frangia luminosa dal massimo centrale è 2,5 mm.

- Calcola la lunghezza d’onda in metri e poi esprimila in A°.
- Cosa succede se si avvicinano le due fenditure?

9 INTERNET Un raggio luminoso proveniente da un mezzo con indice di rifrazione 1,5 incide con un angolo di 45° su un altro mezzo avente indice 1,2.

- Calcola di quanto viene deviato il raggio di luce.
- Descrivi come mediante la rifrazione della luce si può spiegare l’illusione ottica della fata morgana.

[Usa un motore di ricerca digitando le parole chiave rifrazione luce fata morgana.]

10 INTERNET Un oggetto viene posto ad una distanza di 20 cm dal centro ottico di una lente sferica avente un potere diottrico di 10 diottrie.

- Calcola l’ingrandimento lineare prodotto dalla lente.
- Perché l’immagine è distorta se la lente risulta affettata da aberrazione sferica?

[Ricerca informazioni sull’aberrazione sferica.]
1) Se sono necessari 4 kJ di energia termica per innalzare la temperatura di un oggetto di ferro di 45 K, qual è la sua massa? \(c_{\text{ferro}} = 460 \text{ J/(kg·K)} \) \((193 \text{ g}) \)

2) Viene introdotto in 300 g di acqua, inizialmente alla temperatura di 45,5 °C, un termometro di capacità termica 46 J/K, inizialmente a temperatura ambiente (300 K). Nell’ipotesi che non si siano dispersioni di calore, qual è la temperatura misurata dal termometro? \((44,8 \text{ °C}) \)

3) Quanta energia è necessaria per far evaporare 0,62 litri di acqua inizialmente alla temperatura di 100 °C? Qual è la temperatura del sistema al termine dell’ evaporazione? \((1,4 \cdot 10^5 \text{ J}; 100 \text{ °C}) \)

4) Un recipiente di acciaio (calore specifico 500 J/(kg·K)) di massa 300 kg contiene 250 litri d’acqua in equilibrio termico alla temperatura di 10°C. L’intero sistema è riscaldato sino alla temperatura di 90 °C. Quanto calore deve fornire una sorgente tenendo conto che il 40% del calore si disperde nell’ambiente esterno? \((1,6 \cdot 10^7 \text{ J}) \)

5) Una sfera di vetro contiene 15 g di vapore d’acqua a 105 °C. Quanto calore si deve estrarre dal vapore, affinché esso condensi, raffreddandosi sino alla temperatura di 0 °C? \((4,04 \cdot 10^4 \text{ J}) \)

6) Un cubetto di ghiaccio di 100g si trova alla temperatura di –18 °C. Quanta energia è necessaria per fonderlo completamente?

3. Un raggio di luce è riflesso da uno specchio piano avendo angolo di incidenza di 37°. Supponi di ruotare lo specchio di un angolo \(\theta \), di quale angolo sarà ruotato il raggio riflesso? \[26\]

4. Calcola quante volte il fascio di luce mostrato nella figura viene riflesso:
\[\text{a) dallo specchio in alto;}
\[\text{b) dallo specchio in basso.}\]

64 Per determinare la profondità di una piscina piena d’acqua si misura la sua larghezza, uguale a 5,5 m, e si osserva che lo spigolo del fondo appare allineato con il bordo superiore opposto della piscina (a pelo d’acqua) a un angolo di 14° rispetto all’orizzontale, come mostrato in figura. Calcola la profondità \(h \) della piscina, assumendo che l’acqua abbia indice di rifrazione pari a 1,33.